Identification of the Causative Gene for Simmental Arachnomelia Syndrome Using a Network-Based Disease Gene Prioritization Approach

نویسندگان

  • Shihui Jiao
  • Qin Chu
  • Yachun Wang
  • Zhenquan Xie
  • Shiyu Hou
  • Airong Liu
  • Hongjun Wu
  • Lin Liu
  • Fanjun Geng
  • Congyong Wang
  • Chunhua Qin
  • Rui Tan
  • Xixia Huang
  • Shixin Tan
  • Meng Wu
  • Xianzhou Xu
  • Xuan Liu
  • Ying Yu
  • Yuan Zhang
چکیده

Arachnomelia syndrome (AS), mainly found in Brown Swiss and Simmental cattle, is a congenital lethal genetic malformation of the skeletal system. In this study, a network-based disease gene prioritization approach was implemented to rank genes in the previously reported ∼7 Mb region on chromosome 23 associated with AS in Simmental cattle. The top 6 ranked candidate genes were sequenced in four German Simmental bulls, one known AS-carrier ROMEL and a pooled sample of three known non-carriers (BOSSAG, RIFURT and HIRMER). Two suspicious mutations located in coding regions, a mis-sense mutation c.1303G>A in the bystin-like (BYSL) gene and a 2-bp deletion mutation c.1224_1225delCA in the molybdenum cofactor synthesis step 1 (MOCS1) gene were detected. Bioinformatic analysis revealed that the mutation in MOCS1 was more likely to be the causative mutation. Screening the c.1224_1225delCA site in 383 individuals from 12 cattle breeds/lines, we found that only the bull ROMEL and his 12 confirmed progeny carried the mutation. Thus, our results confirm the conclusion of Buitkamp et al. that the 2-bp deletion mutation c.1224_1225delCA in exon 11 of the MOCS1 gene is causative for AS in Simmental cattle. Furthermore, a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was developed to detect the causative mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

Syndrome of arachnomelia in Simmental cattle

BACKGROUND The syndrome of arachnomelia is an inherited malformation mainly of limbs, back and head in cattle. At present the arachnomelia syndrome has been well known mainly in Brown Swiss cattle. Nevertheless, the arachnomelia syndrome had been observed in the Hessian Simmental population during the decade 1964-1974. Recently, stillborn Simmental calves were observed having a morphology simil...

متن کامل

Identification of Toxic Shock Syndrome Toxin-1 (TSST-1) gene in Staphylococcus aureus isolated from bovine mastitis milk

Staphylococcus aureus is a major causative pathogen of clinical and subclinical mastitis of dairy domestic ruminants. This agent produces a variety of extracellular toxins and virulence factors including Toxic Shock Syndrome Toxin-1 (TSST-1) which is the major cause of Toxic Shock Syndrome (TSS). In this study 58 S. aureus isolates obtained from 9 dairy herds in East and West Azerbaijan provinc...

متن کامل

Identification of a Novel CLCNKB Mutation in an Iranian Family with Bartter Syndrome Type 3.

Bartter syndrome (BS) is a group of uncommon genetic disorders of reabsorption of salt in the cortical thick ascending limb (TAL) of the Henle's loop, typically distinguished by metabolic alkalosis, salt loss, hypokalemia, hyperreninemic hyperaldosteronism and normal blood pressure. Bartter syndrome type 3, recognized as a classic BS (CBS), occurs because of mutations in CLCNKB gene. We enroll...

متن کامل

Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013